释放|隐私计算:实现数据价值释放的突破口( 二 )


3.信任机制是隐私计算广泛应用的关键隐私计算技术自诞生以来重要使命便是保证隐私数据在利用过程中不被泄露。作为一项新技术,如何能自证安全、持续强化安全、建立市场信任是其被广泛应用的关键。“自证安全”是隐私计算应用的起点,当前隐私计算应用主要通过深入介绍产品保密算法机制、签订严格保密协议和引入第三方评测机构评测产品来实现。持续强化安全是隐私计算应用的长效保障,目前主要通过不断优化算法来防范恶意攻击,更加严格控制计算流程来封堵漏洞等方式实现。建立市场信任是隐私计算产品应用的关键问题。在隐私计算过程中,通过严格的数据授权、身份验证、状态监控预警等方式让数据提供方始终清楚己方数据的用量、用法、用途均不超出事先约定,可以充分建立用户信任乃至市场信任,但当前的应用在这一部分工作仍需加强。
四、隐私计算发展面临的问题我国隐私计算发展具备一定优势、存在广阔应用空间,但由于技术发展仍不完善,因此也面临着一些问题。
1.隐私计算技术性能还难以满足大规模商用要求虽然目前隐私计算的性能已经大大提升,但由于其加密机理复杂、交互次数多,当流通的数据量较大或结构较为复杂时,计算效率问题仍然未能解决。特别是对于复杂算法的联合建模效率仍然难以令人满意。
2.隐私计算技术市场难以迅速培育相对于其巨大的市场前景,目前隐私计算技术的市场还远未成熟,而市场环境的培育也呈现出较大的难度。一方面,由于隐私计算技术复杂且常常呈现“黑盒化”现象,大部分用户对隐私技术难以理解和信任。另一方面,隐私计算处理的对象往往是敏感的数据资产,试错成本大,从而更加增加了用户的接受成本。
4.目前大部分企业的数据规范性和数据质量难以支撑隐私计算技术由于隐私计算算法敏感度较高,因此对参与方的数据规范性和数据质量要求也较高。此外,隐私计算多用于跨企业甚至跨行业的数据流通,对参与方的数据一致性也提出了较高要求。
5.现有法律法规未对隐私计算地位进行明确定位例如,《中华人民共和国网络安全法》中规定“未经被收集者同意,网络运营者不得向他人提供个人信息”,同时设置了“经过处理无法识别特定个人且不能复原”的例外条款。将个人信息用于隐私计算是否属于这一例外条款,法律法规及相关标准等并无明确界定。然而,由于隐私计算仅仅避免了原始数据转移的过程,但仍然完成了基于多方数据的计算,使得其在某种程度上依然破坏了消费者的隐私。这正在成为制约隐私计算发展的无法回避的问题。
五、隐私计算发展趋势从技术角度看,隐私计算正呈现出如下趋势。
1.与区块链结合构建完整解决方案区块链的公开透明和全节点验证,数据将流经区块链上的每个节点,使其无法很好地处理隐私数据。将隐私计算应用于区块链上,既一定程度上增加了隐私计算结果的不可篡改性和可验证性,也增加了区块链上数据的保密能力,目前成为诸多厂商的技术融合方向。
2.软硬件协同提升隐私计算性能硬件加速在隐私计算性能提升方面正在发挥越来越关键的作用,特别是一些专用芯片和控件的使用,明显提升了隐私计算的性能。
3.向大规模分布式计算迈进2020年以来隐私计算逐渐成熟的一个表现就是分布式隐私计算的逐渐应用,为解决隐私计算在计算量方面的瓶颈提供了优秀实践。
4.与平台设施的进一步整合越来越多的隐私计算企业将其产品与大数据平台设施进行整合,从而提供从存储计算到建模挖掘的全方位能力,大大提升产品的便利性。
5.隐私计算的实现方式更加多样化对于短周期项目,通过低代码甚至零代码开发,通过图形化拉拖拽的方式替代编码可以大大节省开发效率,降低隐私计算产品开发门槛。
作为解决数据流通、实现数据价值的关键突破口,隐私计算技术未来的发展前景非常美好。如何进一步地推动隐私计算技术和产业发展,也是相关从业者的关注热点。中国信通院从2017年起持续深入研究隐私计算技术,推出了《数据流通关键技术书白皮书》《多方安全计算技术与应用研究报告》等成果,2019年发布《基于多方安全计算的数据流通工具 技术要求与测试方法》标准,并进行了两轮共计15个产品的评测,成为业界具有很高影响力的权威评测。2020年7月,与近20家业内企业共同编写的《基于可信执行环境的数据计算平台 技术要求与测试方法》《基于联邦学习的数据流通工具 技术要求与测试方法》两项标准同时发布,标准符合性评测即将开展。相关性能测试工具正在研发中。欢迎相关企业参与,共同丰富隐私计算产业应用、推动大数据产业发展。
作者简介
闫树,中国信息通信研究院云计算与大数据研究所大数据与区块链部副主任,高级工程师。主要从事大数据、数据流通等方面的研究工作。
袁博,中国信息通信研究院云计算与大数据研究所工程师。主要从事大数据、数据流通等方面的研究工作。
【 释放|隐私计算:实现数据价值释放的突破口】文章内容摘自中国信通院,如有侵权联系删除


推荐阅读