指向|如何在XR中实现与GUI菜单,键盘输入和指向的基本交互( 二 )


由于XR本质为3D,开发者需要考虑如何渲染详细的项目。例如,当用户移动和旋转时,头显的角度分辨率将决定要使用的字体大小,而GUI元素的选择则取决于所使用的感知技术。
3. 令上述成为现实的感知技术
需要在XR追踪的三个关键感知因素是头、手和眼睛。用于追踪它们的感知技术必须在很大程度上实现三个关键KPI:
精度:感知结果与完美结果(round truth)的比较。鲁棒性:边缘情况的处理。功耗:一种技术或算法的功率和热效率。
3.1 头部追踪
对于应用呈现用户界面,追踪用户头部的方向和平移是另一个重要的考虑因素。头部追踪算法追踪三个方向自由度:纵摇(Pitch)、横摇(Roll)和垂摇(Yaw),以及用户位置(X、Y和Z)的位置自由度。这种算法通常称为六自由度算法。
 指向|如何在XR中实现与GUI菜单,键盘输入和指向的基本交互
文章图片
头部追踪算法通常能够增加预测用户未来头部位置/方向的能力(通常为10到20毫秒),这有助于平滑渲染并确保虚拟对象在空间中保持固定。
头部追踪算法必须持续运行,提供低延迟,并保持低功耗。这种算法的精度要求是很少或没有出现平移和旋转误差。为了帮助实现这一点,骁龙XR2使用了一种名为SLAM的技术来创建一个环境映射。映射环境是为了用于鲁棒、快速和精确的追踪。为了保证算法的鲁棒性,它必须能够处理像摄像头模糊、光线不好等情况。所以,骁龙XR2采用了具有宽视场的特殊单色摄像头,并且搭配了一个硬件加速的头部追踪算法,从而在非常低功耗的情况下以高精度运行。
3.2 手部追踪
捕捉手的运动十分重要,因为大多数人把手作为与自然世界交互的主要方式。这可以通过多种技术实现,包括基于摄像头的手部追踪、移动设备的传感器和触控屏等等。它们可以捕捉到各种各样的动作和手势,包括:
指向和轻触动作(如选择、移动和放置对象)滑动(如浏览屏幕)从一侧到另一侧的手部移动(如滚动)手腕转动,类似于查看手表(如在虚拟手臂显示用户界面元素)通过电容器测量触控(如检测手势,比方说竖起大拇指)。
手部追踪的保真度测量最高可达28个自由度(包括手的所有关节和每个手指)。手部运动的一个重要KPI是允许较大的追踪量,因为用户希望能够张开手臂,抬起手臂和放下手臂。鲁棒性是通过处理边缘情况来实现,如手遮挡摄像头,交叉手指,一只手覆盖另一只手等。
为了允许虚拟手部/控制器的近实时UI交互呈现,手部追踪保持低延迟同样非常重要。对于涉及使用神经网络的手部追踪算法,骁龙XR2能够以高达每秒15万亿次的速度处理基于神经网络的算法。
3.3 眼动追踪
最后,眼动追踪用于追踪用户的视线(或称为注视向量)。
 指向|如何在XR中实现与GUI菜单,键盘输入和指向的基本交互
文章图片
有效的眼动追踪通常需要眼球运动到屏幕变化低于10毫秒的管道。考虑到眼睛的移动速度,这是一个重大的挑战。所以,高通与Tobii进行了合作,将眼动追踪技术带到骁龙XR2的Hexagon DSP SDK,并提供对摄像头的低延迟访问。为了提高眼动追踪的鲁棒性,它应该能够处理世界各地的不同人群的眼睛特征,所以骁龙XR2算法中使用的底层神经网络是通过一个大型、多样化的数据集进行训练。
眼动追踪同时可以通过促进注视点渲染来提高能效。这涉及到以不同细节程序渲染屏幕不同的区域。
4. 总结
随着沉浸式XR体验等新媒介越来越流行,UI设计领域将继续发展。但与传统的2D GUI不同,3D环境及新的交互方式不仅带来了新的可能性,其同时揭示了新的设计考虑。
驱动这一点的是尖端的感知技术,包括头部、眼睛和手部追踪设备。但为了有效地提供所述功能,相关技术必须是鲁棒的、精确的的和节能的。
原文链接:https://yivian.com/news/76954.html
【来源:砍柴网】
【 指向|如何在XR中实现与GUI菜单,键盘输入和指向的基本交互】声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。 邮箱地址:newmedia@xxcb.cn


推荐阅读