光子张量CPU:迸发5G机器学习新活力( 二 )


 
作者建议,在这种情况下,有必要探索和重新研发当前逻辑计算平台的操作范式,在这种逻辑计算平台中,矩阵代数依赖于对内存的连续访问 。在这方面,光的波动性质和相关的固有操作,如干涉和衍射,可以在提高计算吞吐量和同时降低神经形态平台的功耗方面发挥重要作用 。
 
他们建议未来的技术应该在其随时间变化的输入信号所在的领域执行计算任务,并利用其内在的物理操作 。在这个观点中,光子是计算节点分布式网络和在网络边缘(如5G)对大数据执行智能任务的引擎的理想匹配,其中数据信号可能已经以光子的形式存在(如监控摄像头、光学传感器等),从而预先过滤和智能调节允许向下游流向数据中心和云系统的数据流量 。
 
在这里,他们探索了利用光子张量核(PTC)的方法,该方法能够与训练好的核进行一次性的4乘4矩阵的(非迭代的)和完全被动的乘法和积累 。换句话说,一旦NN被训练,权重被存储在一个4位的多层光子存储器中,直接在芯片上实现,而不需要额外的电光电路或芯片外DRAM 。该光子存储器具有低损耗、相变、纳米光子电路的特点,其基础是将G2Sb2Se5的导线沉积在一个平面波导上,可以使用电热开关进行更新,并且可以完全通过光学读取 。电热开关是由夹住相变存储器(PCM)导线的钨加热电极实现 。
 

光子张量CPU:迸发5G机器学习新活力

文章插图
 
 
作者表示,这项工作代表了实现并行存储数据和处理的光子张量处理器的第一种方法,与提供实时分析的最先进的硬件加速器相比,它可以将相乘累积(MAC)操作的数量提高几个数量级,同时显著降低功耗和延迟 。
 
【光子张量CPU:迸发5G机器学习新活力】与依赖逻辑门的数字电子学不同,在集成光子学中,乘法、积累和更一般的线性代数运算可以固有地、非迭代地执行,得益于信号的电磁特性和有效的光物质相互作用所提供的内在并行性 。在这方面,集成光子学是一个理想的平台,映射特定的复杂操作一对一到硬件,在某些情况下算法,实现时间复杂度 。


推荐阅读