「中国电气传动网」机器视觉是工业4.0和物联网的关键( 二 )


企业如何应用机器视觉?
当您考虑到典型工业流程中涉及的每个步骤时 , 不难发现机器视觉可以改善操作的每个方面 。
为了制造单个汽车零件 , 人与机器协作来采购原材料 , 评估其质量 , 将它们运送到工厂进行加工 , 并在每个制造阶段将这些物品移至整个工厂 。 最终 , 他们可以通过质量检查流程成功看到它 , 然后再次出门 , 至少要等待旅程的最后一站 。 稍后 , 零售商或最终用户会收到它 。
无论该产品处于静止状态 , 运输中还是尚未组装 , 机器视觉都提供了一种自动处理产品的方法 。 它提高了每个部门(例如装配)的效率 , 并保持了更高 , 更一致的质量水平 。
公司已经在现实世界中将机器视觉添加到其工作流程中 。
一些应用程序很简单 , 例如在仓库地面上放置一条生产线 , 以使无人驾驶车辆安全地跟随 。 其他机器视觉工具甚至更复杂 , 尽管即使最简单的示例也可以改变游戏规则 。
在工业界中 , 最令人兴奋的机器视觉示例包括曾经被认为很难或不可能外包给机器人的任务 。 如前所述 , 从仓库的垃圾箱中拣货是一个过程 , 它在涉及错误时具有固有的风险 。 履行方面的错误会使商誉和客户付出代价 。
鉴于产品损坏 , 物品位置和SKU的轻微变化是该领域最大的错误来源 , 因此采用机器学习进行垃圾箱拣选是很自然的选择 。
如今已经有近100%的自动拣选机器人可用 , 它们可以安全地导航 , 检查垃圾箱中的零件和产品 , 使用机械臂进行正确的拣选并将拣选运输到集结或包装区域 。
最终 , 这意味着公司在运输损坏的商品或看起来与客户订购的商品相似但不完全匹配的错误的SKU时 , 风险要小得多 。
自动化的质量保证和检查是机器视觉和IoT的另一个方面 , 它正在迅速普及 。
在某些现代化的制造环境中 , 即使不牺牲人工 , 它也可以帮助雇主实现质量检查流程的自动化并改善结果 。 取而代之的是 , 自动化检查站可以处理这项高优先级的工作 , 而员工则需要学习更多的认知要求技能 。
到2025年 , 协作机器人将有可能在所有机器人技术销售中占据34%的份额 。 这在很大程度上是由于机器视觉的改进以及为消除现代工业中尽可能低的效率 , 不准确性和浪费所致 。
机器视觉与第四次工业革命
期望机器视觉在未来几年继续发展 , 并进一步推动工业4.0 , 许多人称之为第四次工业革命 。 眼睛已经接受有关具有机器视觉功能的嵌入式和板级图像处理功能的新型 , 低成本产品的培训 。
【「中国电气传动网」机器视觉是工业4.0和物联网的关键】机器视觉功能将导致物联网和机器视觉的更广泛采用 , 以及企业利用数字智能的新方法 。


推荐阅读