and|CVPR 2020 开源论文 | 多种可能性行人未来路径预测( 二 )


and|CVPR 2020 开源论文 | 多种可能性行人未来路径预测
本文插图

▲ 我们提供了一个简单易用的场景可视化编辑工具
我们的新模型:The Multiverse Model
We propose a multi-decoder framework that predicts both coarse and fine locations of the person using scene semantic segmentation features.
and|CVPR 2020 开源论文 | 多种可能性行人未来路径预测
本文插图

▲ The Multiverse Model for Multi-Future Trajectory Prediction

  • History Encoder computes representations from scene semantics
  • Coarse Location Decoder predicts multiple future grid location sequences by using beam search
  • Fine Location Decoder predicts exact future locations based on the grid predictions
  • Our model achieves STOA performance in the single-future trajectory prediction experiment and also the proposed multi-future trajectory prediction on the Forking Paths Dataset.

and|CVPR 2020 开源论文 | 多种可能性行人未来路径预测
本文插图

▲ Single-Future Trajectory Prediction. The numbers are displacement errors and they are lower the better. For more details see [1].
and|CVPR 2020 开源论文 | 多种可能性行人未来路径预测
本文插图

▲ Multi-Future Trajectory Prediction on the Forking Paths Dataset. The numbers are displacement errors and they are lower the better. For more details see [1].
Qualitative analysis with the popular Social-GAN [2] model:
and|CVPR 2020 开源论文 | 多种可能性行人未来路径预测
本文插图

and|CVPR 2020 开源论文 | 多种可能性行人未来路径预测
本文插图

▲ Qualitative comparison. The left column is from the Social-GAN [2] model. On the right it is our Multiverse model. The yellow trajectory is the observed trajectory and the green ones are the multi-future trajectory ground truth. The yellow-orange heatmaps are the model outputs.
回到前面的例子 , 你的预测对了吗?
and|CVPR 2020 开源论文 | 多种可能性行人未来路径预测
本文插图

项目网站:
https://next.cs.cmu.edu/multiverse/
参考文献
[1] Liang, Junwei, Lu Jiang, Kevin Murphy, Ting Yu, and Alexander Hauptmann. “The garden of forking paths: Towards multi-future trajectory prediction.” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. [Dataset/Code/Model]
[2] Gupta, Agrim, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. “Social gan: Socially acceptable trajectories with generative adversarial networks.” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
[3] http://carla.org/
[4] https://github.com/JunweiLiang/Multiverse
? 稿件确系个人 原创作品 , 来稿需注明作者个人信息(姓名+学校/工作单位+学历/职位+研究方向)
? PaperWeekly 默认每篇文章都是首发 , 均会添加“原创”标志


推荐阅读