阿斯麦|ASML工厂探秘:3亿美元一台的EUV光刻机首次亮相( 二 )



阿斯麦|ASML工厂探秘:3亿美元一台的EUV光刻机首次亮相
文章图片

△PAS2000
1986年,ASML改进了对准系统,推出了PAS2500/10步进型光刻机,同时与德国镜头制造商卡尔蔡司(Carl Zeiss)建立了稳定的合作关系 。
1988年,ASML跟随飞利浦在台湾的合资流片工厂台积电开拓了亚洲业务,彼时,刚刚成立不久的台积电为ASML带来了急需的17台光刻机订单,使得ASML的国际化拓展初见成功 。与台积电的深度合作,也为此后ASML的高速发展奠定了基础 。
当时,ASML在美国有五个办事处,共有84名员工,并在荷兰维尔多芬(Veldhoven)设立了一个新的据点,最终成为该公司的总部 。
1990年左右,ASML推出PAS5500系列光刻机,这一设计超前的8英寸光刻机,其采用了模块化设计的光刻系统,可以在同一平台上生产多代先进IC 。
该平台的完全模块化设计使芯片制造商能够随着技术需求的增加升级系统,并具有业界领先的生产效率和精度,成为了ASML当时扭转局势的重要产品 。
阿斯麦|ASML工厂探秘:3亿美元一台的EUV光刻机首次亮相
文章图片

△PAS5500
PAS5500不仅为ASML带来台积电、三星和现代等关键客户,凭借PAS5500的优势持续获得客户的认可,也为ASML带来了市占率的持续提升和丰厚的盈利 。到1994年时,ASML在全球光刻机市场的市占率已经提升至18% 。
1995年,ASML分别在阿姆斯特丹及纽约纳斯达克上市 。ASML利用上市募集的资金开始进一步加大研发投入并扩大生产规模,扩建了位于荷兰埃因霍温的厂房,现已成为ASML的总部 。
3、超越
如果说PAS5500的成功,让ASML成功在光刻机市场有了重要的一席之地,那么ASML在浸没式光刻技术上的成功,则一举击败尼康等头部光刻机厂商,成为全球光刻机市场的龙头老大 。
在2000年之前,光刻设备中一直采用的是干式光刻技术,虽然镜头和光源等一直在改进,但始终难以将光刻光源的193nm(DUV,深紫外光)波长缩短到157nm,从而进一步提升光刻机的分辨率 。
直到2002年,时任台积电研发副总的林本坚博士提出了一个简单解决办法:放弃突破157nm,退回到技术成熟的193nm,把透镜和硅片之间的介质从空气换成水,由于水对193nm光的折射率高达1.44,那么波长可缩短为193/1.44=134nm,从而可以大幅提升光刻分辨率 。
从以下公式可以看到,光刻分辨率(R)主要由三个因数决定,分别是光的波长(λ)、镜头半孔径角的正弦值(sinθ)、折射率(n)以及系数k1有关 。
阿斯麦|ASML工厂探秘:3亿美元一台的EUV光刻机首次亮相
文章图片

在光源波长及k1不变的情况下,要想提升分辨率,则需要提升n或者sinθ值 。由于sinθ与镜头有关,提升需要很大的成本,目前sinθ已经提升到0.93,已很难再提升,而且其不可能大于1,所以提升n就显得更为现实 。
因此,在原有的193nm光刻机系统当中增加浸没单元,利用超纯水替换透镜和晶圆表面之间的空气间隙(水在193nm波长时的折射率n=1.44,空气为1),使得光源进入后波长缩短,从而提升光刻分辨率 。
基于与台积电的长期深度合作,以及希望通过弯道超车来对尼康等走干式光刻技术路线的头部光机厂商的赶超,ASML当时选择了与台积电合作,走浸没式光刻路线,在2003年开发出了首台浸没式光刻机样机TWINSCAN AT:1150i,成功将90nm制程提升到65nm 。
2006年,ASML首台量产的浸入式设备TWINSCAN XT:1700i发布 。2007年,AMSL又推出了首个193nm的浸没式系统TWINSCAN XT:1900i 。
相对于走干式157nm光刻机路线进行迭代研发的尼康等厂商来说,ASML 193nm浸没式光刻机由于是基于原有的成熟的平台进行改进,不仅成本更低、优化升级更迅速,而且精度更高,良率也更高,受到了客户的普遍欢迎 。这也使得ASML通过浸没式光刻机成功实现了技术及市场的双重领先 。
虽然尼康后期也开始转向浸没式光刻系统,但是由于时间进度上的大幅落后,也导致了其难以在浸没式光刻系统上实现对ASML的追赶,此后开始迅速走向没落 。
4、称霸
使用193nm ArF光源的干式光刻,其可以生产的半导体工艺节点可达45/40nm,而进一步采用浸没式光刻、配合比较激进的可制造性设计(DfM)等技术后,可以生产28nm工艺节点的芯片 。而要在193nm浸没式光刻的基础上,进入到更高端制程,就必须采用多重曝光,但其半导体工艺制程也只能达到7nm左右的极限 。


推荐阅读