宇宙改写基本粒子分类,第三类粒子出现了


"
宇宙中的所有粒子都能被分为两大类——费米子或者玻色子 。 例如 , 电子是典型的费米子 , 它们无法处于同一状态;而光子是典型的玻色子 , 一样的光子能够聚集在一起 。 而现在 , 科学家发现了第三类粒子——任意子 , 这种粒子不会完全疏离 , 但聚集程度又远低于玻色子 。
撰文:Dana Najjar 翻译:贺白
从宇宙线到夸克 , 宇宙中的所有粒子都可以归于两大类 , 要么是费米子 , 要么是玻色子 。 而这种分类方式也相当于将自然界的基本粒子划分进了两个不同的王国 。 不过现在 , 研究人员已经发现了第三个粒子王国的首个成员 。
这个新成员就是任意子 。 之所以能这样划分 , 是因为任意子既不像费米子也不像玻色子 , 它处在一种中间态 。 最近发表在《科学》杂志上的一篇论文中 , 物理学家首次获得了实验证据 , 证明任意子不能被归类进另两个粒子王国中 。 “我们有玻色子和费米子 , 现在我们有了第三个王国 , ”诺贝尔物理学奖得主 , 麻省理工学院的弗兰克·维尔切克(Frank Wilczek)表示 , “这绝对是一个里程碑 。 ”
什么是任意子?
在认识任意子之前 , 我们先来看看玻色子和费米子 。 在一组由全同粒子组成的体系中 , 如果在体系的一个量子态(即由一套量子数所确定的微观状态)上只容许容纳一个粒子 , 这种粒子称为费米子 。 比如两个电子不能处于同一个状态 , 电子就是费米子 。 而玻色子正相反 , 两个一模一样的玻色子可以处于同一个状态 , 光子就是玻色子的典型 。
费米子是粒子世界的“独居者” , 它们从不占据相同的量子态 。 正因为如此 , 作为费米子之一的电子被迫进入原子周围的原子壳层中 。 这看似简单的现象却导致原子中有了大量的空间 , 元素周期表因此产生了惊人的变化 , 化学也因此诞生 。
另一方面 , 玻色子是群居的粒子 , 乐于聚在一起共享相同的量子态 。 因此作为玻色子的光子可以相互穿过 , 使得光线可以不受阻碍地传播而不是四处散射 。
但是 , 如果一个量子粒子绕着另一个量子粒子转 , 而没有回到相同的量子状态 , 会发生什么呢?为了理解这种可能性 , 我们需要对拓扑学 , 即对形状的数学研究做一个简短的讨论 。 如果两个形状中 , 一个可以转换成另一个 , 而不需要任何切割或粘合 , 那么两个形状在拓扑上是等价的 。 一个甜甜圈和一只咖啡杯 , 因为在抽象形状上类似 , 所以我们认为它们在拓朴学上等价 。
现在想象一下 , 一个粒子绕着一个粒子旋转时的轨迹 。 在三维空间中 , 我们可以将这个轨迹一直缩小 , 直到缩小到某个点 。 从拓扑学上讲 , 好像粒子根本没有移动过 。
但是 , 在二维空间中 , 这个轨迹不能收缩 。 因为这个轨迹内部包含了另一个粒子 。 在这个过程中 , 不切断轨迹就不能继续收缩 。 因为二维空间的这一限制 , 一个粒子绕着另一个粒子旋转与将粒子留在同一个位置是不一样的 。
下面这幅图可以帮助我们理解:
宇宙改写基本粒子分类,第三类粒子出现了
本文插图

宇宙改写基本粒子分类,第三类粒子出现了
本文插图
想象一个绕另一个粒子转动的粒子 。 在三维中 , 这个绕转的粒子可以收缩到一个点 , 在拓扑学上等价于这个粒子没有进行过绕转 。 这在数学描述(或波函数)上被高度约束 。 然而在二维中 , 这个绕转轨迹不能被收缩到一个点 , 所以这个粒子是不被约束的 。 因此“什么事情都可能发生” , 这个二维粒子被称作任意子 。
因此 , 我们认为存在第三类粒子 , 即任意子的可能 。 由于它们的波函数不局限在定义了费米子和玻色子的两个解上 , 因此这些粒子既不属于这两个解 , 也不属于这两个解之间的任何东西 。 当维尔切克第一次创造任意子这个词时 , 他在暗示任何事情都可能发生 。


推荐阅读