造可信的AI|2020世界人工智能大会开幕,超级智能时代何时到来?( 三 )
苏菲和亚历山大两个孩子外出散步。他们都看到了一只狗和一棵树。亚历山大还看到了一只猫,并指给苏菲看。她跑去摸了摸小猫。
我们可以轻而易举地回答诸如“谁去散步”之类的问题,问题的答案“苏菲和亚历山大”是直接在文中标明的。但真正的阅读需要我们更进一步看到字句之外的意思。我们还应该能回答诸如“苏菲有没有看到猫”和“孩子们有没有被猫吓到”等问题,虽然这些问题的答案并没有直接摆在文字之中。如果你回答不了,就没办法理解接下去会发生的事情。斯坦福问答数据库并不包含此类问题,新的AI系统也没办法应对这类问题。为了进行对比,我们在撰写此段内容时,马库斯将这则故事在他4岁半的女儿克洛伊身上进行了测试。克洛伊不费吹灰之力就推断出了故事中的苏菲看见了猫。克洛伊还不到6岁的哥哥更棒,接着说如果那只狗其实是一只猫则会如何如何。这种能力,是现如今的AI完全无法企及的。
文章图片
电影《我,机器人》剧照。
技术大鳄们每次发布这样的新闻稿,基本都是同一个套路。而众多媒体(幸亏不是所有媒体)
都将一点点小进展描绘成意义非凡的革命壮举。举例来说,几年前,Facebook开展了一个基础的概念验证项目,针对AI系统阅读简单故事并回答相关问题的能力进行评估。结果一大堆热情高涨的新闻标题随之呼啸而来,《Facebook称已找到让机器人更富智慧的秘密》《能学习并回答问题的Facebook AI软件》《能阅读〈魔戒〉概要并回答问题的软件,可加强Facebook搜索能力》,诸如此类。
果真如此的话,确实属于重大突破。哪怕是能看明白《读者文摘》或托尔金的简明注释本,都算是个了不起的壮举,更别提看懂《魔戒》原著本身了。但无奈的是,真有能力完成这一壮举的AI根本不在我们现如今的视野之中。Facebook AI系统所阅读的文本概要实际上只有4行文字:比尔博回到洞穴。咕噜将魔戒留在了那里。比尔博拿到魔戒。比尔博回到夏尔郡。比尔博将魔戒留在了那里。佛罗多拿到魔戒。佛罗多前往末日山。佛罗多将魔戒留在那里。索伦魔王死去。佛罗多回到夏尔郡。比尔博前往灰港。全剧终。
但即使这样,这个AI系统竭尽全力能做到的只是直接回答段落中所体现的基本问题,例如“魔戒在哪里”“比尔博现在何处”“佛罗多现在何处”。千万别想问“佛罗多为什么放下魔戒”之类的问题。许多媒体人在进行技术报道时,尤其喜欢夸大其词。这样做的直接后果就是让公众误以为AI成真的曙光已经洒满大地。而实际上,我们还有很漫长的夜路要走。从今往后,若再听说某个成功的AI案例,建议读者提出以下6个问题:
1.抛开华而不实的文笔,此AI系统究竟实实在在地做到了哪些事?
2.此成果的通用性有多强?(例如:所提到的阅读任务,是能测量阅读中的所有方面,还是只有其中的一小部分?)
3.有没有演示程序,能让我用自己的例子来实验一下?如果没有,请保持怀疑态度。
4.如果研究人员或媒体称此AI系统强于人类,那么具体指哪些人类,强出多少?
5.被报道的研究成果中所成功完成的具体任务,实际上将我们与真正的人工智能拉近了多少距离?
6.此系统的鲁棒性如何?如果使用其他数据集,在没有大规模重新训练的情况下,是否还能成功?(例如:一个玩游戏的机器如果掌握了下国际象棋的技能,它是否也能玩《塞尔达传说》这类动作冒险游戏?用于识别动物的系统,是否能将之前从未见过的物种准确识别为动物?经过训练能在白天出行的无人驾驶汽车系统,是否也能在夜间或雪天出行,如果路上新增了一个地图中没有的绕行标志,系统是否知道如何应对?)
机器在许多方面依然无法和人类相提并论
诚然,最近几年来,AI的确以日新月异的速度变得更加令人震撼,甚至令人叹为观止。从下棋到语音识别再到人脸识别,AI都取得了长足的进步。我们特别欣赏的一家名叫Zipline的创业公司,利用了一些AI技术来引导无人机将血液送到非洲的患者身边。而像这样有价值的AI应用,在几年前还是无法实现的。
最近AI界的许多成功案例,大都得到了两个因素的驱动:第一,硬件的进步,通过让许多机器并行工作,更大的内存和更快的计算速度成为现实;第二,大数据,包含十亿字节、万亿字节乃至更多数据的巨大数据集,在几年前还不存在。比如ImageNet存有1400万张被标记图片,这在训练计算机视觉系统时发挥了至关重要的作用。
除此之外,还有维基百科以及共同构成万维网的海量文件。和数据同时出现的,还有用于数据处理的算法—“深度学习”。深度学习是一种极其强大的统计引擎(statistical engine)
,我们将在第3章中对此进行具体解释和评价。从Deep Mind下围棋的Alpha Zero和下国际象棋的Alpha Zero,到谷歌最近推出的对话和语音合成系统谷歌Duplex,AI在近几年所取得的几乎每一项进展,其核心都是深度学习。
文章图片
在这些案例中,大数据、深度学习再加上速度更快的硬件,便是AI的制胜之道。深度学习在许多实际应用领域也取得了极大的成功,如皮肤癌诊断、地震余震预测、信用卡欺诈检测等。同时,深度学习也融入了艺术和音乐领域,以及大量的商业应用之中,从语音识别到给照片打标签,再到资讯信息流的排序整理等。我们可以利用深度学习去识别植物,自动增强照片中的天空,甚至还能将黑白照片转换成彩色。深度学习取得了令人瞩目的成就,而AI也随之成了一个巨大的产业。谷歌和Facebook上演了史诗级的人才大战,为博士生开出高薪。
推荐阅读
- 世界|广昌行:置身世界最大莲池 “白衣仙女”与莲共舞
- 报告|支付宝发布2020版《90后攒钱报告》 成都90后攒钱人数全国第五
- 中证网@蚂蚁宣布上市:寻求A+H上市 A股迎来互联网巨头中证网2020-07-20 19:44:060阅
- #格隆汇APP#蚂蚁IPO焦点三问:为何此时?为何是A+H?谁将受益?格隆汇APP2020-07-20 19:43:560阅
- 【新浪科技综合】7月底挂牌上市 理想汽车:不予置评新浪科技综合2020-07-20 19:27:350阅
- 【】音乐养不活音乐人 那短视频呢?2020-07-20 19:26:550阅
- 新浪科技■神州租车:已向港交所申请7月21日上午九时起复牌新浪科技2020-07-20 19:25:400阅
- #新浪科技#独家|井贤栋内部信:上市意味着更大的责任 对蚂蚁人提出三点要求新浪科技2020-07-20 19:25:330阅
- 新浪科技综合■10000亿大消息:支付宝母公司要上市了 两大交易所回应新浪科技综合2020-07-20 19:25:000阅
- 朗目李总监|2020年石家庄房产趋势稳定,房企想涨价太难了!
